Highly Efficient Biotransformation and Production of Selenium Nanoparticles and Polysaccharides Using Potential Probiotic Bacillus subtilis T5

Author:

Duan Yuhua,Li Mengjun,Zhang Sishang,Wang Yidan,Deng Jieya,Wang Qin,Yi TianORCID,Dong XingxingORCID,Cheng Shuiyuan,He YiORCID,Gao Chao,Wang ZhangqianORCID

Abstract

Selenium is an essential microelement required for human health. The biotransformation of selenium nanoparticles has attracted increasing attention in recent years. However, little of the literature has investigated the comprehensive evaluation of the strains for practical application and the effect on the functional properties in the existence of Se. The present study showed the selenite reduction strain Bacillus subtilis T5 (up to 200 mM), which could produce high yields of selenium polysaccharides and selenium nanoparticles in an economical and feasible manner. Biosynthesized selenium nanoparticles by B. subtilis T5 were characterized systematically using UV-vis spectroscopy, FTIR, Zeta Potential, DLS, and SEM techniques. The biosynthesized SeNPs exhibited high stability with small particle sizes. B. subtilis T5 also possessed a tolerance to acidic pH and bile salts, high aggregation, negative hemolytic, and superior antioxidant activity, which showed excellent probiotic potential and can be recommended as a potential candidate for the selenium biopharmaceuticals industry. Remarkably, B. subtilis T5 showed that the activity of α-amylase was enhanced with selenite treatment to 8.12 U/mL, 2.72-fold more than the control. The genus Bacillus was first reported to produce both selenium polysaccharides with extremely high Se-content (2.302 g/kg) and significantly enhance the activity to promote α-amylase with selenium treatment. Overall, B. subtilis T5 showed potential as a bio-factory for the biosynthesized SeNPs and organ selenium (selenium polysaccharide), providing an appealing perspective for the biopharmaceutical industry.

Funder

National Natural Science Foundation of China

Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering

Research and Innovation Initiatives of WHPU

Hubei Province “Chutian Scholar Plan”

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3