Normalizing and Correcting Variable and Complex LC–MS Metabolomic Data with the R Package pseudoDrift

Author:

Rodriguez JonasORCID,Gomez-Cano Lina,Grotewold ErichORCID,de Leon Natalia

Abstract

In biological research domains, liquid chromatography–mass spectroscopy (LC-MS) has prevailed as the preferred technique for generating high quality metabolomic data. However, even with advanced instrumentation and established data acquisition protocols, technical errors are still routinely encountered and can pose a significant challenge to unveiling biologically relevant information. In large-scale studies, signal drift and batch effects are how technical errors are most commonly manifested. We developed pseudoDrift, an R package with capabilities for data simulation and outlier detection, and a new training and testing approach that is implemented to capture and to optionally correct for technical errors in LC–MS metabolomic data. Using data simulation, we demonstrate here that our approach performs equally as well as existing methods and offers increased flexibility to the researcher. As part of our study, we generated a targeted LC–MS dataset that profiled 33 phenolic compounds from seedling stem tissue in 602 genetically diverse non-transgenic maize inbred lines. This dataset provides a unique opportunity to investigate the dynamics of specialized metabolism in plants.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3