Abstract
Nutrient availability and utilization in hypothalamic cells are directly associated with the regulation of whole-body energy homeostasis. Thus, establishing metabolic profiling in the hypothalamus in response to metabolic shift is valuable to better understand the underlying mechanism of appetite regulation. In the present study, we evaluate the alteration of lipophilic and hydrophilic metabolites in both the hypothalamus and serum of fasted mice. Fasted mice displayed an elevated ketone body and decreased lactate levels in the hypothalamus. In support of the metabolite data, we further confirmed that short-term food deprivation resulted in the altered expression of genes involved in cellular metabolic processes, including the shuttling of fuel sources and the production of monocarboxylates in hypothalamic astrocytes. Overall, the current study provides useful information to close the gap in our understanding of the molecular and cellular mechanisms underlying hypothalamic control of whole-body energy metabolism.
Funder
National Research Foundation of Korea
Incheon National University
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献