Abstract
In clinical practice, the Ishak Score system would be adopted to perform the evaluation of the grading and staging of hepatitis according to whether portal areas have fibrous expansion, bridging with other portal areas, or bridging with central veins. Based on these staging criteria, it is necessary to identify portal areas and central veins when performing the Ishak Score staging. The bile ducts have variant types and are very difficult to be detected under a single magnification, hence pathologists must observe bile ducts at different magnifications to obtain sufficient information. This pathologic examinations in routine clinical practice, however, would result in the labor intensive and expensive examination process. Therefore, the automatic quantitative analysis for pathologic examinations has had an increased demand and attracted significant attention recently. A multi-scale inputs of attention convolutional network is proposed in this study to simulate pathologists’ examination procedure for observing bile ducts under different magnifications in liver biopsy. The proposed multi-scale attention network integrates cell-level information and adjacent structural feature information for bile duct segmentation. In addition, the attention mechanism of proposed model enables the network to focus the segmentation task on the input of high magnification, reducing the influence from low magnification input, but still helps to provide wider field of surrounding information. In comparison with existing models, including FCN, U-Net, SegNet, DeepLabv3 and DeepLabv3-plus, the experimental results demonstrated that the proposed model improved the segmentation performance on Masson bile duct segmentation task with 72.5% IOU and 84.1% F1-score.
Funder
Ministry of Science and Technology (MOST), Taiwan
E-DA hospital
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献