Abstract
Ciliopathies are genetic syndromes that link skeletal dysplasias to the dysfunction of primary cilia. Primary cilia are sensory organelles synthesized by intraflagellar transport (IFT)—A and B complexes, which traffic protein cargo along a microtubular core. We have reported that the deletion of the IFT-A gene, Thm2, together with a null allele of its paralog, Thm1, causes a small skeleton with a small mandible or micrognathia in juvenile mice. Using micro-computed tomography, here we quantify the craniofacial defects of Thm2−/−; Thm1aln/+ triple allele mutant mice. At postnatal day 14, triple allele mutant mice exhibited micrognathia, midface hypoplasia, and a decreased facial angle due to shortened upper jaw length, premaxilla, and nasal bones, reflecting altered development of facial anterior-posterior elements. Mutant mice also showed increased palatal width, while other aspects of the facial transverse, as well as vertical dimensions, remained intact. As such, other ciliopathy-related craniofacial defects, such as cleft lip and/or palate, hypo-/hypertelorism, broad nasal bridge, craniosynostosis, and facial asymmetry, were not observed. Calvarial-derived osteoblasts of triple allele mutant mice showed reduced bone formation in vitro that was ameliorated by Hedgehog agonist, SAG. Together, these data indicate that Thm2 and Thm1 genetically interact to regulate bone formation and sculpting of the postnatal face. The triple allele mutant mice present a novel model to study craniofacial bone development.
Funder
Kansas City Consortium on Musculoskeletal Diseases
Subject
Cell Biology,Developmental Biology,Molecular Biology