Intelligent Video Streaming at Network Edge: An Attention-Based Multiagent Reinforcement Learning Solution

Author:

Tang Xiangdong1,Chen Fei1,He Yunlong1

Affiliation:

1. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

Abstract

Video viewing is currently the primary form of entertainment for modern people due to the rapid development of mobile devices and 5G networks. The combination of pervasive edge devices and adaptive bitrate streaming technologies can lessen the effects of network changes, boosting user quality of experience (QoE). Even while edge servers can offer near-end services to local users, it is challenging to accommodate a high number of mobile users in a dynamic environment due to their restricted capacity to maximize user long-term QoE. We are motivated to integrate user allocation and bitrate adaptation into one optimization objective and propose a multiagent reinforcement learning method combined with an attention mechanism to solve the problem of multiedge servers cooperatively serving users. Through comparative experiments, we demonstrate the superiority of our proposed solution in various network configurations. To tackle the edge user allocation problem, we proposed a method called attention-based multiagent reinforcement learning (AMARL), which optimized the problem in two directions, i.e., maximizing the QoE of users and minimizing the number of leased edge servers. The performance of AMARL is proved by experiments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3