A Joint-Parameter Estimation and Bayesian Reconstruction Approach to Low-Dose CT

Author:

Gao Yongfeng1ORCID,Lu Siming1,Shi Yongyi1,Chang Shaojie1,Zhang Hao2,Hou Wei3,Li Lihong4,Liang Zhengrong1

Affiliation:

1. Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA

2. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

3. Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA

4. Department of Engineering Science and Physics, CUNY/CSI, Staten Island, NY 10314, USA

Abstract

Most penalized maximum likelihood methods for tomographic image reconstruction based on Bayes’ law include a freely adjustable hyperparameter to balance the data fidelity term and the prior/penalty term for a specific noise–resolution tradeoff. The hyperparameter is determined empirically via a trial-and-error fashion in many applications, which then selects the optimal result from multiple iterative reconstructions. These penalized methods are not only time-consuming by their iterative nature, but also require manual adjustment. This study aims to investigate a theory-based strategy for Bayesian image reconstruction without a freely adjustable hyperparameter, to substantially save time and computational resources. The Bayesian image reconstruction problem is formulated by two probability density functions (PDFs), one for the data fidelity term and the other for the prior term. When formulating these PDFs, we introduce two parameters. While these two parameters ensure the PDFs completely describe the data and prior terms, they cannot be determined by the acquired data; thus, they are called complete but unobservable parameters. Estimating these two parameters becomes possible under the conditional expectation and maximization for the image reconstruction, given the acquired data and the PDFs. This leads to an iterative algorithm, which jointly estimates the two parameters and computes the to-be reconstructed image by maximizing a posteriori probability, denoted as joint-parameter-Bayes. In addition to the theoretical formulation, comprehensive simulation experiments are performed to analyze the stopping criterion of the iterative joint-parameter-Bayes method. Finally, given the data, an optimal reconstruction is obtained without any freely adjustable hyperparameter by satisfying the PDF condition for both the data likelihood and the prior probability, and by satisfying the stopping criterion. Moreover, the stability of joint-parameter-Bayes is investigated through factors such as initialization, the PDF specification, and renormalization in an iterative manner. Both phantom simulation and clinical patient data results show that joint-parameter-Bayes can provide comparable reconstructed image quality compared to the conventional methods, but with much less reconstruction time. To see the response of the algorithm to different types of noise, three common noise models are introduced to the simulation data, including white Gaussian noise to post-log sinogram data, Poisson-like signal-dependent noise to post-log sinogram data and Poisson noise to the pre-log transmission data. The experimental outcomes of the white Gaussian noise reveal that the two parameters estimated by the joint-parameter-Bayes method agree well with simulations. It is observed that the parameter introduced to satisfy the prior’s PDF is more sensitive to stopping the iteration process for all three noise models. A stability investigation showed that the initial image by filtered back projection is very robust. Clinical patient data demonstrated the effectiveness of the proposed joint-parameter-Bayes and stopping criterion.

Funder

NIH/NCI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance;Schwenzer;J. Hepatol.,2009

2. Deans, S.R. (2007). The Radon Transform and Some of Its Applications, Courier Corporation.

3. The Fourier reconstruction of a head section;Shepp;IEEE Trans. Nucl. Sci.,1974

4. Low-Dose CT: What Has Been Done, and What Challenges Remain;Liang;IEEE Trans. Med. Imaging,2017

5. Iterative parameter choice by discrepancy principle;Jin;IMA J. Numer. Anal.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3