NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition

Author:

Lu Bo1,Liao Si-Ming1,Liang Shi-Jie1,Li Jian-Xiu1ORCID,Liu Xue-Hui2,Huang Ri-Bo134,Zhou Guo-Ping14ORCID

Affiliation:

1. National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China

2. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

3. Life Science and Technology College, Guangxi University, Nanning 530004, China

4. Rocky Mount Life Science Institute, Rocky Mount, NC 27804, USA

Abstract

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3′-sialyllactose (3′-SL) or 6′-sialyllactose (6′-SL) concentration is about 0.5 mM or 6′-SL and 3 mM, respectively. The results also show that SLs (particularly for 3′-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3’-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Talent Project

Nanning Scientific Research and Technology Development Project

Guangxi Major science and technology Innovation base construction project

Central Guidance Fund for Local Scientific and Technological Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3