Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition

Author:

Lee Geon Woo,Kim Hong KookORCID

Abstract

In this paper, a new two-step joint optimization approach based on the asynchronous subregion optimization method is proposed for training a pipeline model composed of two different models. The first-step processing of the proposed joint optimization approach trains the front-end model only, and the second-step processing trains all the parameters of the combined model together. In the asynchronous subregion optimization method, the first-step processing only supports the goal of the front-end model. However, the first-step processing of the proposed approach works with a new loss function to make the front-end model support the goal of the back-end model. The proposed optimization approach was applied, here, to a pipeline composed of a deep complex convolutional recurrent network (DCCRN)-based speech enhancement model and a conformer-transducer-based ASR model as a front-end and a back-end, respectively. Then, the performance of the proposed two-step joint optimization approach was evaluated on the LibriSpeech automatic speech recognition (ASR) corpus in noisy environments by measuring the character error rate (CER) and word error rate (WER). In addition, an ablation study was carried out to examine the effectiveness of the proposed optimization approach on each of the processing blocks in the conformer-transducer ASR model. Consequently, it was shown from the ablation study that the conformer-transducer-based ASR model with the joint network trained only by the proposed optimization approach achieved the lowest average CER and WER. Moreover, the proposed optimization approach reduced the average CER and WER on the Test-Noisy dataset under matched noise conditions by 0.30% and 0.48%, respectively, compared to the approach of separate optimization of speech enhancement and ASR. Compared to the conventional two-step joint optimization approach, the proposed optimization approach provided average CER and WER reductions of 0.22% and 0.31%, respectively. Moreover, it was revealed that the proposed optimization approach achieved a lower average CER and WER, by 0.32% and 0.43%, respectively, than the conventional optimization approach under mismatched noise conditions.

Funder

This work was conducted by Center for Applied Research in Artificial Intelligence(CARAI) grant funded by DAPA and ADD

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3