Depth Analysis of Anesthesia Using EEG Signals via Time Series Feature Extraction and Machine Learning

Author:

Anand Raghav V.1ORCID,Abbod Maysam F.2ORCID,Fan Shou-Zen34ORCID,Shieh Jiann-Shing5

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

2. Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK

3. Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan

4. Department of Anesthesiology, En Chu Kong Hospital, New Taipei City 237, Taiwan

5. Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan

Abstract

The term “anesthetic depth” refers to the extent to which a general anesthetic agent sedates the central nervous system with specific strength concentration at which it is delivered. The depth level of anesthesia plays a crucial role in determining surgical complications, and it is imperative to keep the depth levels of anesthesia under control to perform a successful surgery. This study used electroencephalography (EEG) signals to predict the depth levels of anesthesia. Traditional preprocessing methods such as signal decomposition and model building using deep learning were used to classify anesthetic depth levels. This paper proposed a novel approach to classify the anesthesia levels based on the concept of time series feature extraction, by finding out the relation between EEG signals and the bi-spectral Index over a period of time. Time series feature extraction on basis of scalable hypothesis tests were performed to extract features by analyzing the relation between the EEG signals and Bi-Spectral Index, and machine learning models such as support vector classifier, XG boost classifier, gradient boost classifier, decision trees and random forest classifier are used to train the features and predict the depth level of anesthesia. The best-trained model was random forest, which gives an accuracy of 83%. This provides a platform to further research and dig into time series-based feature extraction in this area.

Funder

Minister of Science of Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3