Characterization of an Antagonistic Actuation System with Nonlinear Compliance for an Upper-Arm Exoskeleton

Author:

Jäger Max1ORCID,Helbig Thomas1ORCID,Goos Moritz1,Köhring Sebastian1,Witte Hartmut1ORCID

Affiliation:

1. Fachgebiet Biomechatronik, Institut für Mechatronische Systemintegration, Fakultät für Maschinenbau, Technische Universität Ilmenau, 98693 Ilmenau, Germany

Abstract

The parallel connection of technical and biological systems with a comparable mechanical behavior offers the possibility of reducing the interaction forces between those systems. Especially in the context of human–robot interaction (e.g., exoskeletons), it can improve user safety and acceptance at the same time. With this aim, we used antagonistic actuators with nonlinear compliance for a modular upper-extremity exoskeleton following biological paragons, mirroring the “blueprint” of its human user. In a test-bed setup, we compared antagonistic compliant actuation with antagonistic stiff, unilateral stiff and unilateral compliant actuation in the artificial “elbow joint” of the exoskeleton test bed. We show that this type of actuation allows the variation of the joint stiffness during motion, independent of the position. With the approach we propose, compliance leads to reduced force peaks and angular jerk, without sacrifices in terms of time constants and overshoot of amplitudes. We conclude that the presented actuation principle has considerable benefits in comparison to other types of exoskeleton actuation, even when using only commercially available and 3D printed components. Based on our work, further investigations into the control of compliant antagonistically actuated exoskeletons become realizable.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference40 articles.

1. Helbig, T., Kreipe, S., Goos, M., Wenzel, S., Schumann, N.P., and Witte, H. (2021, January 22–25). Prediction of movement for adaptive control of an upper limb exoskeleton. Proceedings of the 9.5th International Symposium on Adaptive Motion of Animals and Machines, Ottawa, ON, Canada.

2. Behrens, R. (2018). Biomechanische Grenzwerte für Die Sichere Mensch-Roboter-Kollaboration. [Ph.D. Thesis, Technische Universität Ilmenau].

3. Valori, M., Scibilia, A., Fassi, I., Saenz, J., Behrens, R., Herbster, S., Bidard, C., Lucet, E., Magisson, A., and Schaake, L. (2021). Validating Safety in Human–Robot Collaboration: Standards and New Perspectives. Robotics, 10.

4. Pratt, G.A., and Williamson, M.M. (1995, January 5–9). Series elastic actuators. Proceedings of the Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA.

5. Variable impedance actuators: A review;Vanderborght;Robot. Auton. Syst.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3