Ferroelectret Polypropylene Foam-Based Piezoelectric Energy Harvester for Different Seismic Mass Conditions

Author:

Ravikumar Chandana1ORCID,Markevicius Vytautas1

Affiliation:

1. Department of Electronics Engineering, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, LT-51365, student street 50-438, 44249 Kaunas, Lithuania

Abstract

Energy harvesting technologies and material science has made it possible to tap into the abundant amount of surrounding vibrational energy to efficiently convert it into useable energy providing power to portable electronics and IoT devices. Recent investigations show that the piezoelectric effect is created in cellular polymers called ferroelectrets. These cellular-compliant polymers with polarized pores have a piezoelectric response to generate electrical energy when subjected to mechanical strain or surrounding vibration. It is found that there is a significant difference between ferroelectret polarized cellular polypropylene foam and traditional piezoelectric polymers such as polyvinylidene fluoride (PVDF). The former has approximately ten times higher piezoelectric coefficient than the latter. This means that with an acceleration of 9.81 m/s2 force on this material, ferroelectrets generate up to 39 (µW/g/mm3) power output. Designing a polypropylene-based piezoelectric energy harvester based on the d33 mode of vibration can be challenging due to several factors, as it requires balancing multiple factors such as mechanical stability, piezoelectric response, circuit topology, electrode size, spacing, placement relative to the piezoelectric material, and so on. This paper proposes the preliminary experimental investigation of ferroelectret cellular polypropylene foam in harvesting performance. Suggestions of different approaches for the structural design of energy harvesters are provided. The vibration-dependent response and generated output are examined concerning pulse or sinusoidal input excitation. The voltage generated for both excitations is compared and suggestions are provided regarding the suitable kind of excitation for the chosen ferroelectret material. Finally, conclusions and prospects for ferroelectret materials used in energy-harvesting applications are given.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3