Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review

Author:

Satar Muhammad Naim1,Akhir Mohd Fadzil1ORCID,Zainol Zuraini1ORCID,Chung Jing Xiang2ORCID

Affiliation:

1. Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia

2. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia

Abstract

After Bakun proposed his hypothesis in 1990 regarding upwelling under climate change, researchers conducted intensive studies to obtain the trends, current status, and future predictions of upwelling. Numerous studies have mainly focused on four major upwelling areas, which are part of the Eastern Boundary Upwelling System (EBUS). However, despite its importance, little attention has been given to the marginal seas upwelling areas such as the South China Sea (SCS), Arabian Sea, Baltic Sea, and other small-scale upwelling locations. Here, we combined several published studies to develop a new synthesis describing climate change impacts on these areas. There had been uncertainty regarding the intensification of upwelling, depending on the locations, data type, and method used. For the SCS, Vietnam and the northern SCS showed intensifying upwelling trends, while the Taiwan Strait showed a decreasing trend. Separate studies in eastern Hainan and the Arabian Sea (Somali and Oman) showed contrasting results, where both increasing and decreasing trends of upwelling had been recorded. Like the SCS, the Baltic Sea showed different results for different areas as they found negative trends along the Polish, Latvian and Estonian, and positive trends along the Swedish coast of the Baltic Sea and the Finnish coast of the Gulf of Finland. While small scales upwelling in La Guajira and southern Java showed increasing and decreasing trends, respectively. All of these limited studies suggest that researchers need to conduct a lot more studies, including the future projection of upwelling, by using climate models to develop a new understanding of how the upwelling in the SCS responds to climate change.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3