Fog Computing and Industry 4.0 for Newsvendor Inventory Model Using Attention Mechanism and Gated Recurrent Unit

Author:

Gonzalez Joaquin1ORCID,Avelar Sosa Liliana2ORCID,Bravo Gabriel1ORCID,Cruz-Mejia Oliverio3ORCID,Mejia-Muñoz Jose-Manuel1ORCID

Affiliation:

1. Departamento de Ingeniería Eléctrica y Computación, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

2. Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniera y Tecnologa, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

3. Departamento de Ingeniería Industrial, FES Aragón, Universidad Nacional Autónoma de México, México 57171, Mexico

Abstract

Background: Efficient inventory management is critical for sustainability in supply chains. However, maintaining adequate inventory levels becomes challenging in the face of unpredictable demand patterns. Furthermore, the need to disseminate demand-related information throughout a company often relies on cloud services. However, this method sometimes encounters issues such as limited bandwidth and increased latency. Methods: To address these challenges, our study introduces a system that incorporates a machine learning algorithm to address inventory-related uncertainties arising from demand fluctuations. Our approach involves the use of an attention mechanism for accurate demand prediction. We combine it with the Newsvendor model to determine optimal inventory levels. The system is integrated with fog computing to facilitate the rapid dissemination of information throughout the company. Results: In experiments, we compare the proposed system with the conventional demand estimation approach based on historical data and observe that the proposed system consistently outperformed the conventional approach. Conclusions: This research introduces an inventory management system based on a novel deep learning architecture that integrates the attention mechanism with cloud computing to address the Newsvendor problem. Experiments demonstrate the better accuracy of this system in comparison to existing methods. More studies should be conducted to explore its applicability to other demand modeling scenarios.

Publisher

MDPI AG

Reference28 articles.

1. Jacobs, F.R., Chase, R.B., and Lummus, R.R. (2014). Operations and Supply Chain Management, McGraw-Hill/Irwin.

2. Applying deep learning to the newsvendor problem;Oroojlooyjadid;IISE Trans.,2020

3. Zhang, Y., and Gao, J. (2017, January 14–18). Assessing the performance of deep learning algorithms for newsvendor problem. Proceedings of the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China. Proceedings, Part I 24.

4. The big data newsvendor: Practical insights from machine learning;Ban;Oper. Res.,2019

5. An integrated data-driven method using deep learning for a newsvendor problem with unobservable features;Neghab;Eur. J. Oper. Res.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3