Satellite Constellation Reveals Crop Growth Patterns and Improves Mapping Accuracy of Cropping Practices for Subtropical Small-Scale Fields in Japan

Author:

Sakuma Asahi,Yamano HiroyaORCID

Abstract

Mapping of agricultural crop types and practices is important for setting up agricultural production plans and environmental conservation measures. Sugarcane is a major tropical and subtropical crop; in general, it is grown in small fields with large spatio-temporal variations due to various crop management practices, and satellite observations of sugarcane cultivation areas are often obscured by clouds. Surface information with high spatio-temporal resolution obtained through the use of emerging satellite constellation technology can be used to track crop growth patterns with high resolution. In this study, we used Planet Dove imagery to reveal crop growth patterns and to map crop types and practices on subtropical Kumejima Island, Japan (lat. 26°21′01.1″ N, long. 126°46′16.0″ E). We eliminated misregistration between the red-green-blue (RGB) and near-infrared band imagery, and generated a time series of seven vegetation indices to track crop growth patterns. Using the Random Forest algorithm, we classified eight crop types and practices in the sugarcane. All the vegetation indices tested showed high classification accuracy, and the normalized difference vegetation index (NDVI) had an overall accuracy of 0.93 and Kappa of 0.92 range of accuracy for different crop types and practices in the study area. The results for the user’s and producer’s accuracy of each class were good. Analysis of the importance of variables indicated that five image sets are most important for achieving high classification accuracy: Two image sets of the spring and summer sugarcane plantings in each year of a two-year observation period, and one just before harvesting in the second year. We conclude that high-temporal-resolution time series images obtained by a satellite constellation are very effective in small-scale agricultural mapping with large spatio-temporal variations.

Funder

Japan Science Society

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3