Quantitative Evaluation of Spatial and Temporal Variation of Soil Salinization Risk Using GIS-Based Geostatistical Method

Author:

Wang Zheng,Zhang Fei,Zhang Xianlong,Chan Ngai Weng,Kung Hsiang-te,Zhou Xiaohong,Wang Yishan

Abstract

Soil salinization is one of the environmental threats affecting the sustainable development of arid oases in the northwest of China. Thus, it is necessary to assess the risk of soil salinity and analyze spatial and temporal changes. The objective of this paper is to develop a temporal and spatial soil salinity risk assessment method based on an integrated scoring method by combining the advantages of remote sensing and GIS technology. Based on correlation coefficient analysis to determine the weights of risk evaluation factors, a comprehensive scoring system for the risk of salinity in the dry and wet seasons was constructed for the Ebinur Lake Wetland National Nature Reserve (ELWNNR), and the risk of spatial variation of soil salinity in the study area was analyzed in the dry and wet seasons. The results show the following: (1) The risk of soil salinity during the wet season is mainly influenced by the plant senescence reflectance index (PSRI), deep soil water content (D_wat), and the effect of shallow soil salinity (SH_sal). The risk of soil salinity during the dry season is mainly influenced by shallow soil salinity (SH_sal), land use and land cover change (LUCC), and deep soil moisture content (D_wat). (2) The wet season was found to have a high risk of salinization, which is mainly characterized by moderate, high, and very high risks. However, in the dry season, the risk of salinity is mainly characterized by low and moderate risk of salinity. (3) In the ELWNNR, as the wet season changes to dry season (from May to August), moderate-risk area in the wet season easily shifts to low risk and risk-free, and the area of high risk in the wet season easily shifts to moderate risk. In general, the overall change in salinity risk of the ELWNNR showed a significant relationship with changes in lake water volume, indicating that changes in water volume play an important role in the risk of soil salinity occurrence. Ideally, the quantitative analysis of salinity risk proposed in this study, which takes into account temporal and spatial variations, can help decision makers to propose more targeted soil management options.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3