Quantitative Estimation of the Impacts of Precursor Emissions on Surface O3 and PM2.5 Collaborative Pollution in Three Typical Regions of China via Multi-Task Learning

Author:

Liu Mengnan1ORCID,Ma Mingliang1ORCID,Liu Mengjiao1,Meng Fei1ORCID,Fu Pingjie1ORCID,Xing Huaqiao1,Bi Jingxue1ORCID,Zheng Zhe2,Lv Yongqiang1

Affiliation:

1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

2. Disaster Reduction Center of Shandong Province, Jinan 250102, China

Abstract

The coordinated control of PM2.5 and O3 pollution has become a critical factor restricting the improvement of air quality in China. In this work, precursors and related influencing factors were utilized to establish PM2.5 and O3 estimation models in the North China Plain (NCP), the Yangzi River Delta (YRD), and the Pearl River Delta (PRD) using a multi-task-learning (MTL) model. The prediction accuracy of these three MTL models was high, with R2 values ranging from 0.69 to 0.83. Subsequently, these MTL models were used to quantitatively reveal the relative importance of each factor to PM2.5 and O3 collaborative pollution simultaneously. Precursors and meteorological factors were the two most critical influencing factors for PM2.5 and O3 pollution in three regions, with their relative importance values larger than 29.99% and 15.89%, respectively. Furthermore, these models were used to reveal the response of PM2.5 and O3 to each precursor in each region. In the NCP and the YRD, the two most important precursors of PM2.5 pollution are SO2 and HCHO, while the two most critical factors for O3 pollution are HCHO and NO2. Therefore, SO2 and VOC emissions reduction is the most important measure for PM2.5 pollution, while VOC and NO2 emission reduction is the most critical measure for O3 pollution in these two regions. In terms of the PRD, SO2 and NO2 are the most important precursors of PM2.5 pollution, while the most important precursors for O3 pollution are HCHO and SOX, respectively. Thus, NO2, SO2, and VOC emission reduction is the most critical measure for PM2.5 pollution, while VOC and NO2 emission reduction is the most critical measure for O3 pollution in the PRD. Overall, this study provides clues and references for the control of PM2.5 and O3 collaborative pollution in the NCP, the YRD, and the PRD.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Youth Innovation Team Project of Higher School in Shandong Province

Jinan City and University Integration Development Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3