Unraveling the Mystery of Water-Induced Loess Disintegration: A Comprehensive Review of Experimental Research

Author:

Chen Yinfu123,Li Peiyue123ORCID,Wang Yuanhang123,Li Jiahui123

Affiliation:

1. School of Water and Environment, Chang’an University, No. 126 Yanta Road, Xi’an 710054, China

2. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, China

3. Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, Chang’an University, No. 126 Yanta Road, Xi’an 710054, China

Abstract

Loess disintegration is a significant physicochemical and mechanical dissolution process that occurs when loess comes into contact with water. This phenomenon contributes to geological disasters such as loess cave erosion, landslides, and debris flows. The disintegration of loess can be influenced by both internal and external factors. Research on internal factors of loess disintegration has been widely recorded, but the research progress on external environmental factors that affect loess disintegration is not well summarized. This review summarizes the impacts of external water environmental factors on loess disintegration and reveals that six external water environmental factors, namely the temperature of the aqueous solution, hydrodynamic conditions, solution pH, salt concentration and type in the solution, freeze–thaw cycles, and dry–wet cycles, can significantly impact loess disintegration. Furthermore, this review delves into three key research areas in loess disintegration under the influence of these water environmental factors: experimental research on loess disintegration, the disintegration parameters used in such research and their variations, and the water–soil chemical reactions and microstructural changes during loess disintegration. It concludes that current experimental research on loess disintegration suffers from inadequate studies, with existing research associated with poor comparability and weak representativeness, and a lack of comprehensive, systematic analysis of its regularities of influence and response mechanisms from both microscopic and macroscopic perspectives. This paper can provide valuable insights for the prevention of loess geological disasters and engineering safety construction.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Qinchuangyuan “Scientist + Engineer” Team Development Program of the Shaanxi Provincial Department of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3