Abstract
In this study, we developed a completely contactless air conveyor system for transporting and positioning planar objects. The air conveyor forms a thin film underneath the object for support and simultaneously generates a controlled airflow that results in viscous traction. It is potentially applicable in the manufacturing process for semiconductor wafer or flat foodstuffs, where mechanical contact is expected to be avoided during transportation of the products to minimize contamination. The air conveyor employs duplicated arrays of actuating cells that are square pockets with a surrounding dam. A simple model is proposed to characterize the viscous force. The theoretical analysis reveals that the total force is the composition of an actuating force generated in the pocket areas and the side areas and a drag force generated in the dam areas. Experimental investigations are conducted on the basic characteristics of the film pressure distribution and the viscous force. The results show that the air film pressure is symmetrically distributed in the width direction but nonsymmetrically distributed in the length direction. The viscous force increases if the suction flow rate is enlarged or the gap thickness is narrowed. Comparison of the experimental results and the calculated results indicates that the model can provide an accurate prediction. A proportional–integral–derivative (PID) controller is applied for 1D-position control and position tracking. The actuating direction is selected using fast switching valves and the amplitude of the actuating force is adjusted using a control valve to vary the suction flow rate. The simulated and the experimental results verify the feasibility of the air conveyor system and the control method.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献