MGF-Based Mutual Approximation of Hybrid Fading: Performance of Wireless/Power Line Relaying Communication for IoT

Author:

Chen ZhixiongORCID,Ye Cong,Yuan Jinsha,Han Dongsheng

Abstract

Wireless and power line communications (PLC) are important components of distribution network communication, and have a broad application prospect in the fields of intelligent power consumption and home Internet of Things (IoT). This study mainly analyzes the performance of a dual-hop wireless/power line hybrid fading system employing an amplify-and-forward (AF) relay in terms of outage probability and average bit error rate (BER). The Nakagami-m distribution captures the wireless channel fading; whereas the PLC channel gain is characterized by the Log-normal (LogN) distribution. Moreover, the Bernoulli-Gaussian noise model is used on the noise attached to the PLC channel. Owing to the similarity between LogN and Gamma distributions, the key parameters of probability density function (PDF) with approximate distribution are determined by using moment generating function (MGF) equations, joint optimization of s vectors, and approximation of LogN variable sum. The MGF of the harmonic mean of the dual Gamma distribution variables is derived to evaluate the system performance suitable for any fading parameter m value. Finally, Monte Carlo simulation is used to verify the versatility and accuracy of the proposed method, and the influence of the hybrid fading channel and multidimensional impulse noise parameters on system performance is analyzed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3