Developing Comprehensive Local Climate Zone Land Use Datasets for Advanced High-Resolution Urban Climate and Environmental Modeling

Author:

Wang Yongwei1ORCID,Zhao Danmeng1ORCID,Ma Qian2

Affiliation:

1. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Wenzhou Meteorological Bureau, Wenzhou 325000, China

Abstract

The Local Climate Zone (LCZ) classification scheme is a vital method of building a category dataset for high-resolution urban land. For the development of urban meteorology, air pollution and related disciplines, the high-resolution classification data of urban buildings are very important. This study aims to create LCZ datasets with detailed architectural characteristics for major cities and urban agglomerations in China, and obtain more accurate results. We constructed 120 m resolution land use datasets for 63 cities (mainly provincial capitals, municipalities directly under the Central Government, important prefecture-level cities and special administrative regions) and 4 urban agglomerations in China based on the local climate zone (LCZ) classification scheme using the World Urban Database and Access Portal Tools method (WUDAPT). Nearly 100,000 samples were used, of which 76,000 training samples were used to provide spectral signatures and 23,000 validation samples were used to ensure accuracy assessments. Compared with similar studies, the LCZ datasets in this paper were generally of good quality, with an overall accuracy of 71–93% (mean 82%), an accuracy for built classifications of 57–83% (mean 72%), and an accuracy for natural classifications of 70–99% (mean 90%). In addition, 35% of 63 Chinese cities have construction areas of more than 5%, and the plateaus northwest of Chengdu and Chongqing are covered with snow all year round. Therefore, based on the original LCZ classification system, the construction area (LZC H) and the snow cover (LCZ I) were newly added as the basic classifications of urban LCZ classification in China. Detailed architectural features of cities and urban agglomerations in China are provided by the LCZ datasets in this study. It can be applied to fine numerical models of the meteorological and atmospheric environment and improve the prediction accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3