Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning

Author:

dos Santos Bruno Dias12ORCID,de Pinho Carolina Moutinho Duque3ORCID,Páez Antonio2ORCID,Amaral Silvana1ORCID

Affiliation:

1. Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil

2. School of Earth, Environment & Society, McMaster University, Hamilton, ON L8S 4K1, Canada

3. Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09210-580, Brazil

Abstract

Identifying urban patterns in the cities in the Brazilian Amazon can help to understand the impact of human actions on the environment, to protect local cultures, and secure the cultural heritage of the region. The objective of this study is to produce a classification of intra-urban patterns in Amazonian cities. Concretely, we produce a set of Urban and Socio-Environmental Patterns (USEPs) in the cities of Santarém and Cametá in Pará, Brazilian Amazon. The contributions of this study are as follows: (1) we use a reproducible research framework based on remote sensing data and machine learning techniques; (2) we integrate spatial data from various sources into a cellular grid, separating the variables into environmental, urban morphological, and socioeconomic dimensions; (3) we generate variables specific to the Amazonian context; and (4) we validate these variables by means of a field visit to Cametá and comparison with patterns described in other works. Machine learning-based clustering is useful to identify seven urban patterns in Santarém and eight urban patterns in Cametá. The urban patterns are semantically explainable and are consistent with the existing scientific literature. The paper provides reproducible and open research that uses only open software and publicly available data sources, making the data product and code available for modification and further contributions to spatial data science analysis.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil

Global Affairs Canada

Social Sciences and Humanities Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference88 articles.

1. UN-HABITAT (2022). World Cities Report 2022: Envisaging the Future of Cities, UN-HABITAT.

2. Cidades Médias Na Amazônia Oriental: Das Novas Centralidades à Fragmentação Do Território;Rev. Bras. Estud. Urbanos Reg.,2011

3. da Trindade, S.-C.C. (1998). A Cidade Dispersa: Os Novos Espaços de Assentamentos Em Belém e a Reestruturação Metropolitana. [Ph.D. Thesis, Universidade de São Paulo].

4. Leitão, K.O. (2009). A Dimensão Territorial Do Programa de Aceleração Do Crescimento: Um Estudo Sobre o PAC No Estado Do Pará e o Lugar Que Ele Reserva à Amazônia No Desenvolvimento Do País. [Ph.D. Thesis, Universidade de São Paulo].

5. Undoing Myths: The Amazon-an Urbanized Forest;Becker;Man Biosph. Ser.,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3