Affiliation:
1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. National Geomatics Center of China, Beijing 100830, China
3. Key Laboratory of Spatio-Temporal Information and Intelligent Services, Ministry of Natural Resources of China, Beijing 100830, China
4. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Abstract
Physical urban boundaries (PUBs) are basic geographic information data for defining the spatial extent of urban landscapes with non-agricultural land and non-agricultural economic activities. Accurately mapping PUBs provides a spatiotemporal database for urban dynamic monitoring, territorial spatial planning, and ecological environment protection. However, traditional extraction methods often have problems, such as subjective parameter settings and inconsistent cartographic scales, making it difficult to identify PUBs objectively and accurately. To address these problems, we proposed a self-supervised learning approach for PUB extraction. First, we used nighttime light and OpenStreetMap road data to map the initial urban boundary for data preparation. Then, we designed a pretext task of self-supervised learning based on an unsupervised mutation detection algorithm to automatically mine supervised information in unlabeled data, which can avoid subjective human interference. Finally, a downstream task was designed as a supervised learning task in Google Earth Engine to classify urban and non-urban areas using impervious surface density and nighttime light data, which can solve the scale inconsistency problem. Based on the proposed method, we produced a 30 m resolution China PUB dataset containing six years (i.e., 1995, 2000, 2005, 2010, 2015, and 2020). Our PUBs show good agreement with existing products and accurately describe the spatial extent of urban areas, effectively distinguishing urban and non-urban areas. Moreover, we found that the gap between the national per capita GDP and the urban per capita GDP is gradually decreasing, but regional coordinated development and intensive development still need to be strengthened.
Funder
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献