DCCaps-UNet: A U-Shaped Hyperspectral Semantic Segmentation Model Based on the Depthwise Separable and Conditional Convolution Capsule Network

Author:

Wei Siqi1,Liu Yafei1,Li Mengshan1ORCID,Huang Haijun1,Zheng Xin1,Guan Lixin1

Affiliation:

1. College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China

Abstract

Traditional hyperspectral image semantic segmentation algorithms can not fully utilize the spatial information or realize efficient segmentation with less sample data. In order to solve the above problems, a U-shaped hyperspectral semantic segmentation model (DCCaps-UNet) based on the depthwise separable and conditional convolution capsule network was proposed in this study. The whole network is an encoding–decoding structure. In the encoding part, image features are firstly fully extracted and fused. In the decoding part, images are then reconstructed by upsampling. In the encoding part, a dilated convolutional capsule block is proposed to fully acquire spatial information and deep features and reduce the calculation cost of dynamic routes using a conditional sliding window. A depthwise separable block is constructed to replace the common convolution layer in the traditional capsule network and efficiently reduce network parameters. After principal component analysis (PCA) dimension reduction and patch preprocessing, the proposed model was experimentally tested with Indian Pines and Pavia University public hyperspectral image datasets. The obtained segmentation results of various ground objects were analyzed and compared with those obtained with other semantic segmentation models. The proposed model performed better than other semantic segmentation methods and achieved higher segmentation accuracy with the same samples. Dice coefficients reached 0.9989 and 0.9999. The OA value can reach 99.92% and 100%, respectively, thus, verifying the effectiveness of the proposed model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3