Affiliation:
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
Abstract
Synthetic aperture radar (SAR) imagery has the advantages of all-day and all-weather observation. However, due to the imaging mechanism of microwaves, it is difficult for nonexperts to interpret SAR images. Transferring SAR imagery into optical imagery can better improve the interpretation of SAR data and support the further fusion research of multi-source remote sensing. Methods based on generative adversarial networks (GAN) have been proven to be effective in SAR-to-optical translation tasks. To further improve the translation results of SAR data, we propose a method of an adjacent dual-decoder UNet (ADD-UNet) based on conditional GAN (cGAN) for SAR-to-optical translation. The proposed network architecture adds an adjacent scale of the decoder to the UNet, and the multi-scale feature aggregation of the two decoders improves structures, details, and edge sharpness of generated images while introducing fewer parameters compared with UNet++. In addition, we combine multi-scale structure similarity (MS-SSIM) loss and L1 loss as loss functions with cGAN loss together to help preserve structures and details. The experimental results demonstrate the superiority of our method compared with several state-of-the-art methods.
Funder
Key Project of Tianjin Natural Science Foundation
National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit
Tianjin Transportation Science and Technology Development Project
National Natural Science Foundation of China Grant
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献