Robust LiDAR-Based Vehicle Detection for On-Road Autonomous Driving

Author:

Jin Xianjian12,Yang Hang1,He Xiongkui34ORCID,Liu Guohua5,Yan Zeyuan1,Wang Qikang1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China

2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

3. College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, China

4. College of Science, China Agricultural University, Beijing 100193, China

5. Shanghai Tenghao Vision Technology Limited Company, Shanghai 201107, China

Abstract

The stable detection and tracking of high-speed vehicles on the road by using LiDAR can input accurate information for the decision-making module and improve the driving safety of smart cars. This paper proposed a novel LiDAR-based robust vehicle detection method including three parts: point cloud clustering, bounding box fitting and point cloud recognition. Firstly, aiming at the problem of clustering quality degradation caused by the uneven distribution of LiDAR point clouds and the difference in clustering radius between point cloud clusters in traditional DBSCAN (TDBSCAN) obstacle clustering algorithms, an improved DBSCAN algorithm based on distance-adaptive clustering radius (ADBSCAN) is designed, and a point cloud KD-Tree data structure is constructed to speed up the traversal of the algorithm; meanwhile, the OPTICS algorithm is introduced to enhance the performance of the proposed algorithm. Then, by adopting different fitting strategies for vehicle contour points in various states, the adaptability of the bounding box fitting algorithm is improved; Moreover, in view of the shortcomings of the poor robustness of the L-shape algorithm, the principal component analysis method (PCA) is introduced to obtain stable bounding box fitting results. Finally, considering the time-consuming and low-accuracy training of traditional machine learning algorithms, advanced PointNet in deep learning technique is built to send the point cloud within the bounding box of a high-confidence vehicle into PointNet to complete vehicle recognition. Experiments based on our autonomous driving perception platform and the KITTI dataset prove that the proposed method can stably complete vehicle target recognition and achieve a good balance between time-consuming and accuracy.

Funder

National Key Research and Development Program of China

National Modern Agricultural Industrial Technology System of China

2115 Talent Development Program of China Agricultural University and Foundation for State Key Laboratory of Automotive Simulation and Control

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3