Spatiotemporal Evolution of Arid Ecosystems Using Thematic Land Cover Products

Author:

Xu Lili12ORCID,Chen Tianyu1,Li Baolin3,Yuan Yecheng3ORCID,Tsendbazar Nandin-Erdene4ORCID

Affiliation:

1. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China

2. Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China

4. Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands

Abstract

The pathway, direction, and potential drivers of the evolution in global arid ecosystems are of importance for maintaining the stability and sustainability of the global ecosystem. Based on the Climate Change Initiative Land Cover dataset (CCILC), in this study, four indicators of land cover change (LCC) were calculated, i.e., regional change intensity (RCI), rate of change in land cover (CR), evolutionary direction index (EDI), and artificial change percentage (ACP), to progressively derive the intensity, rate, evolutionary direction, and anthropogenic interferences of global arid ecosystems. The LCC from 1992 to 2020 and from 28 consecutive pair-years was observed at the global, continental, and country scales to examine spatiotemporal evolution in the Earth’s arid ecosystems. The following main results were obtained: (1) Global arid ecosystems experienced positive evolution despite complex LCCs and anthropogenic interferences. Cautious steps to avoid potential issues caused by rapid urbanization and farmland expansion are necessary. (2) The arid ecosystems in Australia, Central Asia, and southeastern Africa generally improved, as indicated by EDI values, but those in North America were degraded, with 41.1% of LCCs associated with urbanization or farming. The arid ecosystems in South America also deteriorated, but 83.4% of LCCs were in natural land covers. The arid ecosystems in Europe slightly improved with overall equivalent changes in natural and artificial land covers. (3) Global arid ecosystems experienced three phases of change based on RCI values: ‘intense’ (1992–1998), ‘stable’ (1998–2014), and ‘intense’ (2014–2020). In addition, two phases of evolution based on EDI values were observed: ‘deterioration’ (1992–2002) and ‘improvement’ (2002–2020). The ACP values indicated that urbanization and farming activities contributed increasingly less to global dryland change since 1992. These findings provide critical insights into the evolution of global arid ecosystems based on analyses of LCCs and will be beneficial for sustainable development of arid ecosystems worldwide within the context of ongoing climate change.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

National Basic Research Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3