Ground Deformation and Permafrost Degradation in the Source Region of the Yellow River, in the Northeast of the Qinghai-Tibet Plateau

Author:

Li Chengye1,Zhao Lin12ORCID,Wang Lingxiao1,Liu Shibo1ORCID,Zhou Huayun23ORCID,Li Zhibin1ORCID,Liu Guangyue23ORCID,Du Erji23ORCID,Zou Defu2ORCID,Hou Yingxu1

Affiliation:

1. School of Geographical Sciences, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China

2. Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100864, China

Abstract

The source region of the Yellow River (SRYR) is situated on the permafrost boundary in the northeast of the Qinghai-Tibet Plateau (QTP), which is an area highly sensitive to climate change. As a result of increasing global temperatures, the permafrost in this region has undergone significant degradation. In this study, we utilized Sentinel-1 to obtain ground surface deformation data in the SRYR from June 2017 to January 2022. We then analyzed the differences in terrain deformation under various environmental conditions. Our findings indicated an overall subsidence trend in the SRYR, with a long-term deformation velocity of −4.2 mm/a and seasonal deformation of 8.85 mm. Furthermore, the results showed that terrain deformation varied considerably from region to region, and that the Huanghe’ yan sub-basin with the highest permafrost coverage among all sub-basins significantly higher subsidence rates than other regions. Topography strongly influenced ground surface deformation, with flat slopes exhibiting much higher subsidence rates and seasonal deformation. Moreover, the ground temperature and ground ice richness played a certain role in the deformation pattern. This study also analyzed regional deformation details from eight boreholes and one profile line covering different surface conditions, revealing the potential for refining the permafrost boundary. Overall, the results of this study provide valuable insights into the evolution of permafrost in the SRYR region.

Funder

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3