Defending against Poisoning Attacks in Aerial Image Semantic Segmentation with Robust Invariant Feature Enhancement

Author:

Wang Zhen1ORCID,Wang Buhong1,Zhang Chuanlei2,Liu Yaohui3ORCID,Guo Jianxin4

Affiliation:

1. School of Information and Navigation, Air Force Engineering University, FengHao East Road, Xi’an 710082, China

2. School of Artificial Intelligence, Tianjin University of Science and Technology, Dagu South Road, Hexi District, Tianjin 300457, China

3. School of Surveying and Geo-Informatics, Shandong Jianzhu University, FengMing Road, LiCheng District, Jinan 250101, China

4. School of Electronic Information, Xijing University, XiJing Road, Chang’an District, Xi’an 710123, China

Abstract

The outstanding performance of deep neural networks (DNNs) in multiple computer vision in recent years has promoted its widespread use in aerial image semantic segmentation. Nonetheless, prior research has demonstrated the high susceptibility of DNNs to adversarial attacks. This poses significant security risks when applying DNNs to safety-critical earth observation missions. As an essential means of attacking DNNs, data poisoning attacks destroy model performance by contaminating model training data, allowing attackers to control prediction results by carefully crafting poisoning samples. Toward building a more robust DNNs-based aerial image semantic segmentation model, in this study, we proposed a robust invariant feature enhancement network (RIFENet) that can resist data poisoning attacks and has superior semantic segmentation performance. The constructed RIFENet improves the resistance to poisoning attacks by extracting and enhancing robust invariant features. Specifically, RIFENet uses a texture feature enhancement module (T-FEM), structural feature enhancement module (S-FEM), global feature enhancement module (G-FEM), and multi-resolution feature fusion module (MR-FFM) to enhance the representation of different robust features in the feature extraction process to suppress the interference of poisoning samples. Experiments on several benchmark aerial image datasets demonstrate that the proposed method is more robust and exhibits better generalization than other state-of-the-art methods.

Funder

Natural Science Foundation of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shandong Top Talent Special Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3