Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD)

Author:

Azzoni Roberto Sergio1ORCID,Pelfini Manuela1,Zerboni Andrea1ORCID

Affiliation:

1. Dipartimento adi Scienze della Terra “A. Desio”, Università degli Studi di Milano, 20133 Milan, Italy

Abstract

Since the end of the Little Ice Age (LIA, ~1830), the accelerated glaciers’ shrinkage along mid-latitude high mountain areas promoted a quick readjustment of geomorphological processes with the onset of the paraglacial dynamic, making proglacial areas among the most sensitive Earth’s landscapes to ongoing climate change. A potentially useful remote-sensing method for investigating such dynamic areas is the DEM (Digital Elevation Model) of Difference (DoD) technique, which quantifies volumetric changes in a territory between successive topographic surveys. After a detailed geomorphological analysis and comparison with historical maps of the Martello Valley (central Italian Alps), we applied the DoD for reconstructing post-LIA deglaciation dynamics and reported on the surface effects of freshly-onset paraglacial processes. The head of the valley is still glacierized, with three main ice bodies resulting from the huge reduction of a single glacier present at the apogee of the LIA. Aftermath: the glaciers lose 60% of their initial surface area, largely modifying local landforms and expanding the surface of the proglacial areas. The DoD analysis of the 2006–2015 timeframe (based on registered DEM derived from LiDAR—Light Detection and Ranging—data) highlights deep surface elevation changes ranging from +38 ± 4.01 m along the foot of rock walls, where gravitative processes increased their intensity, to −47 ± 4.01 m where the melting of buried ice caused collapses of the proglacial surface. This approach permits estimating the volume of sediments mobilized and reworked by paraglacial processes. Here, in less than 10 years, −23,675 ± 1165 m3 of sediment were removed along the proglacial area and transported down valley, highlighting the dynamicity of proglacial areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3