Abstract
A novel parametric control method for the compressor blade, the full-blade surface parametric method, is proposed in this paper. Compared with the traditional parametric method, the method has good surface smoothness and construction convenience while maintaining low-dimensional characteristics, and compared with the semi-blade surface parametric method, the proposed method has a larger degree of geometric deformation freedom and can account for changes in both the suction surface and pressure surface. Compared with the semi-blade surface parametric method, the method only has four more control parameters for each blade, so it does not significantly increase the optimization time. The effectiveness of this novel parametric control method has been verified in the aerodynamic optimization field of compressors by an optimization case of Stage35 (a single-stage transonic axial compressor) under multi-operating conditions. The optimization case has brought the following results: the adiabatic efficiency of the optimized blade at design speed is 1.4% higher than that of the original one and the surge margin 2.9% higher, while at off-design speed, the adiabatic efficiency is improved by 0.6% and the surge margin by 1.3%.
Funder
National Science and Technology Major Project of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献