Development of a Performance-Enhanced Hybrid Magnetorheological Elastomer-Fluid for Semi-Active Vibration Isolation: Static and Dynamic Experimental Characterization

Author:

Ali AbdelrahmanORCID,Salem Ayman M. H.ORCID,Muthalif Asan G. A.ORCID,Ramli Rahizar Bin,Julai SabariahORCID

Abstract

Magnetorheological elastomers (MREs) are a class of emerging smart materials in which their mechanical and rheological properties can be immediately and reversibly altered upon the application of a magnetic field. The change in the MRE properties under the magnetic field is widely known as the magnetorheological (MR) effect. Despite their inherent viscoelastic property-change characteristics, there are disadvantages incorporated with MREs, such as slow response time and the suspension of the magnetic particles in the elastomer matrix, which depress their MR effect. This study investigates the feasibility of a hybrid magnetorheological elastomer-fluid (MRE-F) for longitudinal vibration isolation. The hybrid MRE-F is fabricated by encapsulating MR fluid inside the elastomer matrix. The inclusion of the MR fluid can enhance the MR effect of the elastomer by providing a better response to the magnetic field and, hence, can improve the vibration isolation capabilities. For this purpose, an MRE-based coupling is developed, and isolation performance is investigated in terms of the linear transmissibility factor. The performance of the hybrid MRE-F was compared against two different MRE samples. The results show that further enhancement of MR-effect in MREs is possible by including MR fluid inside the elastomer. The hybrid MRE-F exhibited better stiffness change with the current increase and recorded the highest value of 55.911 N/mm. The transmissivity curves revealed that the MRE-F contributed to a broader shift in the natural frequency with a 7.2 Hz overall shift at 8.9 mT. The damping characteristics are higher in MRE-F, recording the highest percentage increase in damping with 33.04%. Overall, the results reveal the promising potential of hybrid MRE-F in developing MRE-based coupling for longitudinal vibration isolation.

Funder

Qatar University Graduate Assistantship Grant.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3