Study on the Cooling Effect of Asphalt Pavement Blended with Composite Phase Change Materials

Author:

Dai Ming,Wang Shiwan,Deng Jianbo,Gao Zhijie,Liu ZhiyunORCID

Abstract

To explore the cooling effect of phase change materials (PCM) on asphalt pavement, a numerical model of the coupled heat transfer process of a typical monolithic subgrade of the G7 Expressway in the eastern Tianshan mountain area was developed. Three types of paraffin materials (OP55E, OP52E, OP47E) were mixed in a 4:3:3 volume ratio and blended into the asphalt upper layer and overall asphalt layer at volume ratios of 5%, 10%, 15% and 20%. The cooling effect of different PCM addition schemes was simulated and analyzed, and the frequency and duration of asphalt pavement high temperature operation status were also measured. The results showed that: (1) Th addition of PCM in the asphalt layer can effectively reduce the frequency of pavement high temperature rutting damage. The number of days and average daily duration of high temperature on the road surface were both reduced. (2) The cooling effect was positively correlated with the PCM volume mixing ratio, and the temperature drop of the pavement also increased with the increase of the PCM blending ratio. As the PCM mixing ratio increased from 5% to 20%, the initial 75 °C pavement cooled by 1.49 °C and 4.66 °C, respectively, and the number of days and hours of pavement temperature over 70 °C decreased to 4 days and 3.3 h, respectively. (3) The cooling effect of the asphalt upper layer PCM scheme was greater at a small mixing ratio (5%), whereas the performance of the overall asphalt layer PCM blended scheme was effectively promoted by increasing the equivalent heat capacity of system under the large mixing ratio (20%).

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Solar Thermal Energy Storage;Garg,1985

2. Feasibility study on phase change material—Polyethylene glycol used in asphalt mixture;Hu;Highway,2009

3. Application of phase change materials in asphalt concrete pavement analysis of foreground;Ma;Highway,2000

4. Materials used as PCM in thermal energy storage in buildings: A review

5. Study on feasibility of leach-green mixture with polyethylene glycol as phase variable material;Hu;Highway,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3