Shape Memory Alloy—Polymer Composites: Static and Fatigue Pullout Strength under Thermo-Mechanical Loading

Author:

Rodinò Stefano,Curcio Elio M.,Renzo Danilo A.ORCID,Sgambitterra EmanueleORCID,Magarò Pietro,Furgiuele Franco,Brandizzi Marco,Maletta CarmineORCID

Abstract

This work was carried out within the context of an R&D project on morphable polymer matrix composites (PMC), actuated by shape memory alloys (SMA), to be used for active aerodynamic systems in automotives. Critical issues for SMA–polymer integration are analyzed that are mostly related to the limited strength of metal–polymer interfaces. To this aim, materials with suitable thermo-mechanical properties were first selected to avoid premature activation of SMA elements during polymer setting as well as to avoid polymer damage during thermal activation of SMAs. Nonstandard samples were manufactured for both static and fatigue pullout tests under thermo-mechanical loading, which are made of SMA wires embedded in cylindrical resin blocks. Fully coupled thermo-mechanical simulations, including a special constitutive model for SMAs, were also carried out to analyze the stress and temperature distribution in the SMA–polymer samples as obtained from the application of both mechanical loads and thermal activation of the SMA wires. The results highlighted the severe effects of SMA thermal activation on adhesion strength due to the large recovery forces and to the temperature increase at the metal–polymer interface. Samples exhibit a nominal pullout stress of around 940 MPa under static mechanical load, and a marked reduction to 280 MPa was captured under simultaneous application of thermal and mechanical loads. Furthermore, fatigue run-out of 5000 cycles was achieved, under the combination of thermal activation and mechanical loads, at a nominal stress of around 200 MPa. These results represent the main design limitations of SMA/PMC systems in terms of maximum allowable stresses during both static and cyclic actuation.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3