The Proposition and Evaluation of the RoEduNet-SIMARGL2021 Network Intrusion Detection Dataset

Author:

Mihailescu Maria-Elena,Mihai Darius,Carabas Mihai,Komisarek Mikołaj,Pawlicki Marek,Hołubowicz Witold,Kozik Rafał

Abstract

Cybersecurity is an arms race, with both the security and the adversaries attempting to outsmart one another, coming up with new attacks, new ways to defend against those attacks, and again with new ways to circumvent those defences. This situation creates a constant need for novel, realistic cybersecurity datasets. This paper introduces the effects of using machine-learning-based intrusion detection methods in network traffic coming from a real-life architecture. The main contribution of this work is a dataset coming from a real-world, academic network. Real-life traffic was collected and, after performing a series of attacks, a dataset was assembled. The dataset contains 44 network features and an unbalanced distribution of classes. In this work, the capability of the dataset for formulating machine-learning-based models was experimentally evaluated. To investigate the stability of the obtained models, cross-validation was performed, and an array of detection metrics were reported. The gathered dataset is part of an effort to bring security against novel cyberthreats and was completed in the SIMARGL project.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3