Transformation of Biomass Waste into Sustainable Organic Fertilizers

Author:

Chew ,Chia ,Yen ,Nomanbhay ,Ho ,Show

Abstract

The management of solid waste presents a challenge for developing countries as thegeneration of waste is increasing at a rapid and alarming rate. Much awareness towards thesustainability and technological advances for solid waste management has been implemented toreduce the generation of unnecessary waste. The recycling of this waste is being applied to producevaluable organic matter, which can be used as fertilizers or amendments to improve the soil structure.This review studies the sustainable transformation of various types of biomass waste such as animalmanure, sewage sludge, municipal solid waste, and food waste, into organic fertilizers and theirimpact on waste minimization and agricultural enhancement. The side effects of these organicfertilizers towards the soil are evaluated as the characteristics of these fertilizers will differ dependingon the types of waste used, in addition to the varying chemical composition of the organic fertilizers.This work will provide an insight to the potential management of biomass waste to be produced intoorganic fertilizer and the advantages of substituting chemical fertilizer with organic fertilizer derivedfrom the biomass waste.

Funder

Fundamental Research Grant Scheme

Kementerian Sains, Teknologi dan Inovasi

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3