Thermal Comfort and Longwave Radiation over Time in Urban Residential Complexes

Author:

Kwon You Jin,Lee Dong Kun

Abstract

Large cities with a high concentration of high-rise buildings are shaded by urban canyon. This brings a cooling effect compared to the space exposed to the sun, but is not always cool due to the longwave radiation emitted from buildings and the built environment. We tested the micro-scale effects of major external spatial factors, trees, and buildings, under shade on longwave radiation shifts to understand the effects of large shaded areas in megacities. Incoming and outgoing longwave radiations (ILR and OLR, respectively) were found to decrease the overall observation by time zone. Longwave radiation on a micro-scale was also inversely proportional to the tree volume. From mean radiant temperature (MRT) analysis, we found that about a 10% decrease in MRT could be achieved by increasing tree volume by around 50%. Larger tree volumes corresponded to greater blocking effects on longwave radiation. Considering the tree volume, a multilayer urban tree canopy composition can more favorably improve the thermal environment and energy sustainability of a city compared to a single-layer canopy. Larger trees planted with harmonious shrubs are the most effective in reducing longwave radiation.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3