Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids

Author:

Silva Daniel N.,Costa Elisabete C.,Rodrigues Carolina F.,de Melo-Diogo Duarte,Correia Ilídio J.ORCID,Moreira André F.ORCID

Abstract

3D tumor spheroids have arisen in the last years as potent tools for the in vitro screening of novel anticancer therapeutics. Nevertheless, to increase the reproducibility and predictability of the data originated from the spheroids it is still necessary to develop or optimize the techniques used for spheroids’ physical and biomolecular characterization. Fluorescence microscopy, such as confocal laser scanning microscopy (CLSM), is a tool commonly used by researchers to characterize spheroids structure and the antitumoral effect of novel therapeutics. However, its application in spheroids’ analysis is hindered by the limited light penetration in thick samples. For this purpose, optical clearing solutions have been explored to increase the spheroids’ transparency by reducing the light scattering. In this study, the influence of agitation conditions (i.e., static, horizontal agitation, and rotatory agitation) on the ClearT and ClearT2 methods’ clearing efficacy and tumor spheroids’ imaging by CLSM was characterized. The obtained results demonstrate that the ClearT method results in the improved imaging of the spheroids interior, whereas the ClearT2 resulted in an increased propidium iodide mean fluorescence intensity as well as a higher signal depth in the Z-axis. Additionally, for both methods, the best clearing results were obtained for the spheroids treated under the rotatory agitation. In general, this work provides new insights on the ClearT and ClearT2 clearing methodologies and their utilization for improving the reproducibility of the data obtained through the CLSM, such as the analysis of the cell death in response to therapeutics administration.

Funder

Fundação para a Ciência e a Tecnologia

European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3