Promising Antioxidant Activity of Erythrina Genus: An Alternative Treatment for Inflammatory Pain?

Author:

Jiménez-Cabrera TaniaORCID,Bautista MirandeliORCID,Velázquez-González Claudia,Jaramillo-Morales Osmar AntonioORCID,Guerrero-Solano José AntonioORCID,Urrutia-Hernández Thania Alejandra,De la O-Arciniega MinardaORCID

Abstract

The negative impact that oxidative stress has on health is currently known. The complex mechanism of free radicals initiates a series of chain reactions that contribute to the evolution or development of different degenerative disorders. Likewise, these disorders are usually accompanied by inflammatory processes and, therefore, pain. In this sense, reactive oxygen species (ROS) have been shown to promote the nociceptive process, but effective treatment of pain and inflammation still represents a challenge. Over time, it has been learned that there is no single way to relieve pain, and as long as there are no other alternatives, the trend will continue to apply multidisciplinary management, such as promote the traditional use of the Erythrina genus to manage pain and inflammation. In this sense, the Erythrina genus produces a wide range of secondary metabolites, including flavanones, isoflavones, isoflavones, and pterocarpans; these compounds are characterized by their antioxidant activity. Phenolic compounds have demonstrated their ability to suppress pro-oxidants and inhibit inflammatory signaling pathways such as MAPK, AP1, and NFκB. Although there is preclinical evidence supporting its use, the pharmacological effect mechanisms are not entirely clear. Nowadays, there is a fast advancement in knowledge of the disciplines related to drug discovery, but most of nature’s medicinal potential has not yet been harnessed. This review analyzes the decisive role that the Erythrina genus could play in managing inflammatory pain mediated by its compounds and its uses as an antioxidant.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3