Abstract
A series of linear profiles of the elements of the enamel in human molar teeth were made with the use of an electron microprobe and a Raman microscope. It is postulated that the enamel can be treated as the superposition of variable “overbuilt” enamel on the stable “core” enamel at the macro-, micro- and nanoscale level. The excessive values characterize the “overbuilt enamel”. All the profiles of excessive parameters along the enamel thickness from the enamel surface to the dentin enamel junction (DEJ) can be approximated very precisely with the use of exponential functions, where Ca, P, Cl and F spatial profiles are decaying while Mg, Na, K and CO32− ones are growing distributions. The “overbuilt” apatite formed on the boundary with DEJ, enriched in Na, Mg, OH and carbonates, reacts continuously with Ca, Cl and F, passing into an acid-resistant form of the “overbuilt” enamel. The apparent phases arriving in boundary regions of the “overbuilt enamel” were proposed. Microdiffraction measurements reveal relative variation of energy levels during enamel transformations. Our investigations are the milestones for a further new class of biomaterial and nanomaterial development for biomedical applications.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献