Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and 405 nm)—Preliminary Report

Author:

Sterczała BarbaraORCID,Grzech-Leśniak KingaORCID,Michel Olga,Trzeciakowski WitoldORCID,Dominiak MarzenaORCID,Jurczyszyn Kamil

Abstract

Purpose: to assess the effect of photobiomodulation (PBM) on human gingival fibroblast proliferation. Methods: The study was conducted using the primary cell cultures of human fibroblasts collected from systemically healthy donors. Three different laser types, Nd:YAG (1064 nm), infrared diode laser (980 nm), and prototype led laser emitting 405, 450, and 635 nm were used to irradiate the fibroblasts. Due to the patented structure of that laser, it was possible to irradiate fibroblasts with a beam combining two or three wavelengths. The energy density was 3 J/cm2, 25 J/cm2, 64 J/cm2. The viability and proliferation of cells were determined using the (Thiazolyl Blue Tetrazolium Blue) (MTT) test conducted 24, 48, and 72 h after laser irradiation. Results: The highest percentage of mitochondrial activity (MA = 122.1%) was observed in the group irradiated with the 635 nm laser, with an energy density of 64 J/cm2 after 48 h. The lowest percentage of MA (94.0%) was observed in the group simultaneously irradiated with three wavelengths (405 + 450 + 635 nm). The use of the 405 nm laser at 25 J/cm2 gave similar results to the 635 nm laser. Conclusions: The application of the 635 nm and 405 nm irradiation caused a statistically significant increase in the proliferation of gingival fibroblasts.

Funder

„LASDER”National Center for Research and Development in Poland

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3