Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data

Author:

Huang EunchongORCID,Kim Sarah,Ahn TaeJinORCID

Abstract

Technological advances in next-generation sequencing (NGS) have made it possible to uncover extensive and dynamic alterations in diverse molecular components and biological pathways across healthy and diseased conditions. Large amounts of multi-omics data originating from emerging NGS experiments require feature engineering, which is a crucial step in the process of predictive modeling. The underlying relationship among multi-omics features in terms of insulin resistance is not well understood. In this study, using the multi-omics data of type II diabetes from the Integrative Human Microbiome Project, from 10,783 features, we conducted a data analytic approach to elucidate the relationship between insulin resistance and multi-omics features, including microbiome data. To better explain the impact of microbiome features on insulin classification, we used a developed deep neural network interpretation algorithm for each microbiome feature’s contribution to the discriminative model output in the samples.

Funder

This research is supported through the Ministry of Trade, Industry and Energ

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative evaluation of multiomics integration tools for the study of prediabetes: insights into the earliest stages of type 2 diabetes mellitus;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-03-14

2. Deep feature selection for cervical cancer;Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science;2023-10-20

3. Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside;Translational Research;2022-09

4. Human Microbiome and Disease;Reference Module in Biomedical Sciences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3