Information Complexity Ranking: A New Method of Ranking Images by Algorithmic Complexity

Author:

Chambon Thomas1ORCID,Guillaume Jean-Loup1ORCID,Lallement Jeanne2

Affiliation:

1. Laboratoire Informatique, Image et Interaction (L3i), La Rochelle University, 23 Avenue Albert Einstein, 17000 La Rochelle, France

2. Laboratoire Usages du Numerique Pour le Developpement Durable (NUDD), La Rochelle University, 39 rue de Vaux De Foletier, 17000 La Rochelle, France

Abstract

Predicting how an individual will perceive the visual complexity of a piece of information is still a relatively unexplored domain, although it can be useful in many contexts such as for the design of human–computer interfaces. We propose here a new method, called Information Complexity Ranking (ICR) to rank objects from the simplest to the most complex. It takes into account both their intrinsic complexity (in the algorithmic sense) with the Kolmogorov complexity and their similarity to other objects using the work of Cilibrasi and Vitanyi on the normalized compression distance (NCD). We first validated the properties of our ranking method on a reference experiment composed of 7200 randomly generated images divided into 3 types of pictorial elements (text, digits, and colored dots). In the second step, we tested our complexity calculation on a reference dataset composed of 1400 images divided into 7 categories. We compared our results to the ground-truth values of five state-of-the-art complexity algorithms. The results show that our method achieved the best performance for some categories and outperformed the majority of the state-of-the-art algorithms for other categories. For images with many semantic elements, our method was not as efficient as some of the state-of-the-art algorithms.

Funder

Communauté d’agglomération de La Rochelle

Région Nouvelle-Aquitaine (France) and the ECOMOB project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Model of Parallel Sorting Algorithm with Ranking;Cybernetics and Systems Analysis;2024-01

2. ADVANCED MODEL OF PARALLEL SORTING ALGORITHM WITH RANK FORMATION;Kibernetyka ta Systemnyi Analiz;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3