Characteristics of the s–Wave Symmetry Superconducting State in the BaGe3 Compound

Author:

Szewczyk Kamila A.ORCID,Drzazga-Szczȩśniak Ewa A.,Jarosik Marcin W.,Szczȩśniak Klaudia M.,Binek Sandra M.

Abstract

Thermodynamic properties of the s–wave symmetry superconducting phase in three selected structures of the BaGe 3 compound ( P 6 3 / m m c , A m m 2 , and I 4 / m m m ) were discussed in the context of DFT results obtained for the Eliashberg function. This compound may enable the implementation of systems for quantum information processing. Calculations were carried out within the Eliashberg formalism due to the fact that the electron–phonon coupling constant falls within the range λ ∈ 0 . 73 , 0 . 86 . The value of the Coulomb pseudopotential was assumed to be 0 . 122 , in accordance with the experimental results. The value of the Coulomb pseudopotential was assumed to be 0 . 122 , in accordance with the experimental results. The existence of the superconducting state of three different critical temperature values, namely, 4 . 0 K, 4 . 5 K and 5 . 5 K, depending on the considered structure, was stated. We determined the differences in free energy ( Δ F ) and specific heat ( Δ C ) between the normal and the superconducting states, as well as the thermodynamic critical field ( H c ) as a function of temperature. A drop in the H c value to zero at the temperature of 4.0 K was observed for the P 6 3 / m m c structure, which is in good accordance with the experimental data. Further, the values of the dimensionless thermodynamic parameters of the superconducting state were estimated as: R Δ = 2 Δ ( 0 ) / k B T c ∈ { 3 . 68 , 3 . 8 , 3 . 8 } , R C = Δ C ( T c ) / C N ( T c ) ∈ { 1 . 55 , 1 . 71 , 1 . 75 } , and R H = T c C N ( T c ) / H c 2 ( 0 ) ∈ { 0 . 168 , 0 . 16 , 0 . 158 } , which are slightly different from the predictions of the Bardeen–Cooper–Schrieffer theory ( [ R Δ ] B C S = 3 . 53 , [ R C ] B C S = 1 . 43 , and [ R H ] B C S = 0 . 168 ). This is caused by the occurrence of small retardation and strong coupling effects.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3