An N-Modular Redundancy Framework Incorporating Response-Time Analysis on Multiprocessor Platforms

Author:

Baek JaeminORCID,Baek JeonghyunORCID,Yoo JeeheonORCID,Baek HyeongbooORCID

Abstract

A timing constraint and a high level of reliability are the fundamental requirements for designing hard real-time systems. To support both requirements, the N modular redundancy (NMR) technique as a fault-tolerant real-time scheduling has been proposed, which executes identical copies for each task simultaneously on multiprocessor platforms, and a single correct one is voted on, if any. However, this technique can compromise the schedulability of the target system during improving reliability because it produces N identical copies of each job that execute in parallel on multiprocessor platforms, and some tasks may miss their deadlines due to the enlarged computing power required for completing their executions. In this paper, we propose task-level N modular redundancy (TL-NMR), which improves the system reliability of the target system of which tasks are scheduled by any fixed-priority (FP) scheduling without schedulability loss. Based on experimental results, we demonstrate that TL-NMR maintains the schedulability, while significantly improving average system safety compared to the existing NMR.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3