Abstract
Agroecosystems provide a range of benefits to society and the economy, which we call ecosystem services (ES). These services can be evaluated on the basis of environmental and socioeconomic indicators. The irrigation cooling effect (ICE), given its influence on the land surface temperature (LST), is an indicator of climate regulation services from agroecosystems. In this context, the objective of this study is to quantify the ICE in agroecosystems at the local scale. The agroecosystem of citrus cultivation in Campo de Cartagena (Murcia, Spain) is used as a case study. Once the LST was retrieved by remote sensing images for 216 plots, multivariate regression methods were used to identify the factors that explain ICE. The use of a geographically weighted regression (GWR) model is proposed, instead of ordinary least squares, as it offsets the spatial dependence and gives a better fit. The GWR explains 78% of the variability in the LST, by means of three variables: the vegetation index, the water index of the crop, and the altitude. Thus, the effects of the change in land use on the LST due to restrictions on the availability of water (up to 1.22 °C higher for rain-fed crops) are estimated. The trade-offs between ICE and the other ES are investigated by using the irrigation water required to reduce the temperature. This work shows the magnitude of the climate regulation service generated by irrigated citrus and enables its quantification in agroecosystems with similar characteristics.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献