Learning-Based Seismic Velocity Inversion with Synthetic and Field Data

Author:

Farris Stuart1ORCID,Clapp Robert1,Araya-Polo Mauricio2

Affiliation:

1. Department of Geophysics, Stanford University, Stanford, CA 94305, USA

2. TotalEnergies, EP R&T, Houston, TX 77002, USA

Abstract

Building accurate acoustic subsurface velocity models is essential for successful industrial exploration projects. Traditional inversion methods from field-recorded seismograms struggle in regions with complex geology. While deep learning (DL) presents a promising alternative, its robustness using field data in these complicated regions has not been sufficiently explored. In this study, we present a thorough analysis of DL’s capability to harness labeled seismograms, whether field-recorded or synthetically generated, for accurate velocity model recovery in a challenging region of the Gulf of Mexico. Our evaluation centers on the impact of training data selection and data augmentation techniques on the DL model’s ability to recover velocity profiles. Models trained on field data produced superior results to data obtained using quantitative metrics like Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM), and R2 (R-squared). They also yielded more geologically plausible predictions and sharper geophysical migration images. Conversely, models trained on synthetic data, while less precise, highlighted the potential utility of synthetic training data, especially when labeled field data are scarce. Our work shows that the efficacy of synthetic data-driven models largely depends on bridging the domain gap between training and test data through the use of advanced wave equation solvers and geologic priors. Our results underscore DL’s potential to advance velocity model-building workflows in industrial settings using previously labeled field-recorded seismograms. They also highlight the indispensable role of earth scientists’ domain expertise in curating synthetic data when field data are lacking.

Funder

Stanford Earth Imaging Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3