Entropic Dynamics in a Theoretical Framework for Biosystems

Author:

Summers Richard L.1

Affiliation:

1. Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA

Abstract

Central to an understanding of the physical nature of biosystems is an apprehension of their ability to control entropy dynamics in their environment. To achieve ongoing stability and survival, living systems must adaptively respond to incoming information signals concerning matter and energy perturbations in their biological continuum (biocontinuum). Entropy dynamics for the living system are then determined by the natural drive for reconciliation of these information divergences in the context of the constraints formed by the geometry of the biocontinuum information space. The configuration of this information geometry is determined by the inherent biological structure, processes and adaptive controls that are necessary for the stable functioning of the organism. The trajectory of this adaptive reconciliation process can be described by an information-theoretic formulation of the living system’s procedure for actionable knowledge acquisition that incorporates the axiomatic inference of the Kullback principle of minimum information discrimination (a derivative of Jaynes’ principle of maximal entropy). Utilizing relative information for entropic inference provides for the incorporation of a background of the adaptive constraints in biosystems within the operations of Fisher biologic replicator dynamics. This mathematical expression for entropic dynamics within the biocontinuum may then serve as a theoretical framework for the general analysis of biological phenomena.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference49 articles.

1. Schrödinger, E. (2012). What is Life?, Cambridge University Press. [Reprint ed.].

2. Cafaro, C. (2008). The Information Geometry of Chaos, VDM Verlag.

3. Entropic Dynamics;Caticha;Entropy,2015

4. Prigogine, I., and Stengers, I. (1984). Order Out of Chaos, Bantam.

5. Morowitz, H.J. (1968). Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics, Academic Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3