Abstract
Dichlofluanid has long been employed as a fungicide in agriculture and has been massively introduced in antifouling paints for boat hulls over the last two decades. One of the most important toxic effects of antifoulants is represented by immunosuppression in marine invertebrates, which can be analysed in vitro with a number of short-term toxicity assays on haemocytes. Among bioindicators, the colonial ascidian Botryllus schlosseri is a useful candidate; it is a filter-feeding organism living in the water-sediment interface that is found worldwide and is sensitive to antifouling xenobiotics. Dichlofluanid adversely affects both immunocyte lines (phagocyte and cytotoxic lines) after exposure to sublethal concentrations. At 0.05 μM (16.65 μg/L), dichlofluanid induced haemocyte apoptosis and cell shrinkage with a decrease in both motility and phagocytosis. At the lowest concentration (0.01 μM, 3.33 μg/L), inhibition of pivotal enzymatic activities of phagocytes and cytotoxic cells occurred. At the highest concentration (0.1 μM, 33.3 μg/L), dichlofluanid increased glutathione oxidation, leading to stress conditions. The effects of dichlofluanid on immune defence responses are similar to those of organometal-based antifoulants (i.e., organotin compounds and zinc pyrithione), and its use in coastal areas requires attention.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference87 articles.
1. The biology of slime films, Part 3;Callow;Ships World Shipbuild.,1978
2. Adhesion of fouling diatoms to surfaces: Some biochemistry;Cooksey,1986
3. Structural morphology of diatom dominated stream biofilm communities under the impact of soil erosion;Rosowsky,1986
4. Battling Biofilms
5. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献