Electrical Energy Management Based on a Hybrid Artificial Neural Network-Particle Swarm Optimization-Integrated Two-Stage Non-Intrusive Load Monitoring Process in Smart Homes

Author:

Lin Yu-HsiuORCID,Hu Yu-Chen

Abstract

Concerning electrical energy used in today’s modern society, electrical energy demands requested from downstream sectors in a smart grid are continuously increasing. One way to meet the electrical demands requested is to monitor and manage industrial, commercial, as well as residential electrical appliances efficiently in response to Demand Response (DR) programs for Demand-Side Management (DSM). Monitoring and managing electrical appliances that consume electrical energy in fields of interest can be realized through use of Energy Management Systems (EMS) with Non-Intrusive Load Monitoring (NILM). This paper presents an Internet of Things (IoT)-oriented Home EMS (HEMS). Also, a novel hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO)-integrated NILM approach is proposed and used to model and identify electrical appliances for DSM in the HEMS. ANN can be applied in NILM as a load identification task. Nevertheless, the performance of ANN used for load identification depends on three principal design factors: The network topology designed, the type of activation functions chosen, and the training algorithm adopted. As a result, PSO is conducted and used to incorporate meta-heuristics with ANN considering the three principal design factors relating to an ANN design. The HEMS with the novel hybrid ANN-PSO-integrated NILM proposed in this paper was deployed and evaluated in a realistic residential house environment. As the experimentation reported in this paper shows, the presented HEMS utilizing the proposed novel hybrid ANN-PSO-integrated NILM to model and identify monitored electrical appliances is feasible and workable, with an overall classification rate of 91.67% in load classification for DSM.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3